Chlorophyll proteins of photosystem I.

نویسندگان

  • J E Mullet
  • J J Burke
  • C J Arntzen
چکیده

Data are presented which suggest the existence of a light-harvesting pigment-protein complex which is functionally and structurally associated with photosystem I (PSI) reaction centers. These observations are based on techniques which allow isolation of PSI using minimal concentrations of Triton X-100. Properties of density and self aggregation allowed purification of a "native" PSI complex.The isolated PSI particles appear as 106 A spherical subunits when viewed by freeze fracture microscopy. When incorporated into phosphatidyl choline vesicles, the particles lose self-aggregation properties and disperse uniformly within the lipid membrane.The isolated PSI preparation contains 100 +/- 10 chlorophylls/P(700) (Chl a/b ratio greater than 18); this represents a recovery of 27% of the original chloroplast membrane Chl. These particles were enriched in Chl a forms absorbing at 701 to 710 nm. Chl fluorescence at room temperature exhibited a maximum at 690 nm with a pronounced shoulder at 710 nm. At 77 K, peak fluorescence emission was at 736 nm; in the presence of dithionite an additional fluorescence maximum at 695 nm was obtained at 77 K. This dual fluorescence emission peak for the PSI particles is evidence for at least two Chl populations within the PSI membrane subunit. The fluorescence emission observed at 695 nm was identified as arising from the core of PSI which contains 40 Chl/P(700) (PSI-40). This core complex, derived from native PSI particles, was enriched in Chl a absorbing at 680 and 690 nm and fluorescing with maximal emission at 694 nm at 77 K. PSI particles consisting of the PSI core complex plus 20 to 25 Chl antennae (65 Chl/P(700)) could also be derived from native PSI complexes. These preparations were enriched in Chl a forms absorbing at 697 nm and exhibited a 77 K fluorescence emission maximum at 722 nm.A comparison of native PSI particles which contain 110 Chl/P(700) (PSI-110) and PSI particles containing 65 Chl/P(700) (PSI-65) provides evidence for the existence of a peripheral Chl-protein complex tightly associated in the native PSI complex. The native PSI subunits contain polypeptides of 22,500 to 24,500 daltons which are not found in the PSI-65 or PSI-40 subfractions. It is suggested that these polypeptides function to bind 40 to 45 Chl per structural complex, including the Chl which emits fluorescence at 736 nm.A model for the organization of Chl forms is presented in which the native PSI membrane subunit consists of a reaction center core complex plus two regions of associated light-harvesting antennae. The presence of energy "sinks" within the antennae is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of monomeric photosystem I complexes and phosphorylation of chlorophyll a/c-binding polypeptides in Chroomonas sp. strain LT (Cryptophyceae).

Thylakoid membranes of the cryptophyte Chroomonas sp. strain LT were solubilized with dodecyl-beta-maltoside and subjected to sucrose density gradient centrifugation. The four pigment protein complexes obtained were subsequently characterized by absorption and fluorescence spectroscopy, SDS-PAGE, and Western immunoblotting using antisera against the chlorophyll a/c-binding proteins of the marin...

متن کامل

Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis.

Etioplasts of 5-day-old dark-grown barley seedlings synthesize most of the soluble and membrane proteins found in chloroplasts of illuminated plants. Prominent among these proteins are the large subunit of ribulose bisphosphate carboxylase and the alpha- and beta-subunits of the chloroplast ATPase. However, etioplasts do not synthesize four chloroplast-encoded proteins which are major constitue...

متن کامل

Chlorophyll-Proteins and Electron Transport during Iron Nutrition-Mediated Chloroplast Development.

Chlorophyll-protein complexes and electron transport activities were measured during iron nutrition-mediated chloroplast development in sugar beet (Beta vulgaris L. cv F58-554H1). Results showed that the chlorophyll-protein complexes associated with the reaction centers of photosystem I (CP1) and photosystem II (CPa) and the electron transport activities of these two photosystems per leaf area ...

متن کامل

Carotenoid Composition of Chlorophyll-Carotenoid-Proteins from Radish Chloroplasts

Raphanus sativus L., /7-Carotene, Carotenoid Composition, Chlorophyll a-Proteins, LightHarvesting Chlorophyll, Localization of Carotenoids, Lutein, Neoxanthin The uneven distribution of carotenoids and chlorophylls between several chlorophyllcarotenoid-proteins isolated from radish chloroplasts by SDS-polyacrylamide-gel electrophoresis is described. Lutein and neoxanthin are enriched in the lig...

متن کامل

Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings

We have previously observed (Klein, R. R., and J. E. Mullet, 1986, J. Biol. Chem. 261:11138-11145) that translation of two 65-70-kD chlorophyll a-apoproteins of Photosystem I (gene products of psaA and psaB) and a 32-kD quinone-binding protein of Photosystem II (gene product of psbA) was not detected in plastids of dark-grown barley seedlings even though transcripts for these proteins were pres...

متن کامل

Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria.

An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 1980